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Processing Data on/with Graphs

Web or Social Networks
Graph + activity / time series

United States
transmission grid | /v
Source: FEMA Q:gé

ransportation Networks

Point clouds + colors
Graph + feature vectors
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Some Typical Learning Problems

Unsupervised Learning
- Clustering
- Community detection

Semi-Supervised Learning
- Label propagation
- Matrix completion
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Supervised Learning
- Graph convolutional NN,
« geometric Deep Learning »
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Different cases

« Graph given (social network, brain network...) + data on the nodes,
graph information different from features information.

« Graph computed from the datal/features. Carries the same information
as the features, is it useful?
yes if
- graph helps separate the classes -> faster learning, more accurate
- eases interpretation for humans (recommendation system)
- carries different information : global vs local (graph constructed from
global properties/ learning focused on local patterns).
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Unsupervised classification

%onstruct a graph from the features, . ...« . 15
then :

* Spectral cut, spectral clustering

- First eigenvectors of the combinatorial "=, .+
or normalized graph Laplacian.

- Fledler vector : 2 clusters
- k eigenvectors + k-means : k clusters

* Community detection
- Fast and scalable, notion of modularity

[Fortunato, Community detection in graphs, 2010]
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Remark on the graph design

Which distance ? How to connect ?
Popular approaches :

K-NN graph: regular, no hub
- Fast approximate KNN : FLANN

1) N(N-1)/2 weights to compute — k or threshold to chooéé, we
need a sparse Laplacian

2
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- One motivation : graph Laplacian converges (strongly) in

probability to the Laplace-Beltrami operator [Belkin, Nyogi, 2005]

Gaussian distance Wij — exp(—

- Uniform distribution of points on the manifold, 7@ — OQ, U(n) — 0

2) Graph : approximation of a (low-dimensional) manifold
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Semi-supervised learning with / on
graphs

Label propagation
ldea : smoothness, smooth signal on a graph
Argminy ||Y — AX||5 + aXTLX

\ f ?

Vector of Mask Measure of

o smoothness . l | -

Y = AX[3 or [J[Ao(Y - X)|3 == } kS

Measure of smoothness = X I "
XTLX = VX3 =) wij(x; —x;)°
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Learning with/on graphs

Matrix completion

Argminy [Ao (Y — X)[* + a1 X' L1 X + ap X Lo X R
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Learning with/on graphs

Unsupervised learning : Robust PCA on graphs

Data (X) Graph (G) . Sparse (S) Low Rank (L) Clustering on Pnnmpal
with corruptions  of data similarity ‘:é'q Outliers —UxQ’ Components '
— = 8|2 .
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Application : outliers / sparse noise
[Shahid et al., Robust Principal component analysis en graphs, 2015]
Model Objective Constraints | Parameters | Graph? | Factors? | Convex?
1 PCA ming, g [| X — UQ||% Utu =1 d no yes no
2 RPCA [0] ming s || L||« + Al[.S]|1 X=L+S8 A no no yes
3 | PROPOSED ming, g | L||« + Al|S||1 +~ tr(L®LT) X=L+S8S A,y YES NO YES
4 | GLPCA[10] ming.o [| X — UQ||% + 7 tr(Q®Q") QT =1
5 | RGLPCA [10] ming o [|[ X — UQ|l2,1 + 7 tr(Q2Q") d, v
6 MMF [21] ming @ || X — UQ||% + ytr(Q®Q") UtUu=1 yes yes no
7 | MMMF[20] | miny g« ||X — UQ[% +vtr(Q(Y, ag®9)Q") + Bllal* | U'U =1 d,, B
8 | MHMF[I1] | minyg.a X —UQ[% +vtr(Q(Y, ag®))Q") + Bllaf’ | 1Ta=1
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Learning the graph

* Learn the Laplacian matrix from the signals
Space of valid Laplacians : w;; >0, LT =L, » L;;=0
Minimization problem, smooth signals on the graph :

Argmin; ., Tr(X'LX)+||L|r, st. Tr(L)=s

r(XTLX) = waux@ 2|2

[ Dong et al., Laplacian Matrix Learn/ng for Smooth Graph Signal Representation ICASSP 2015]

More scalable, with a log barrier on the degrees :

Argming ., TT(XTLX) —al?t log(W1)+ gHWHF

- No isolated node. [ Kalofolias, How to learn a graph from smooth signals, AISTATS 2016]
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Limits

* Building the graph from the data is computationally
Intensive

N(N — 1) Computation of

9 distances (weights)

Alternative : Approximate nearest neighbors FLANN, N log N
* Shape of the graph Is important,

- avoid hubs

- avold disconnected nodes
- favor clusters ?

* What Is a good graph ? No answer yet...
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Graph CNN

* Standard CNN : learn kernels (elementary localized
patterns), 3x3 or 5x5 squares ot bl Y

with a weighted sum of itself and nearby pixels.

Source pixel

Convolution kernel
(emboss)

MNew pixel value (destination pixel)

* Kernel on a graph ?
* 1) Irregular and 2) the neighborhood change with

Crriginal model

position RS
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Reminder - graph filter

* Graph filter defined on the spectral domain :

Graph filter in the
ﬂ spectral domain

. K—1

Aﬁprbomhmatlonlbya a L
' L Chebychev polynomial g ()\) = E )
0 k:O

0 \ 40

* The kernel to learn:
K—1
K(i) = GFT ' g(\)GFTS; = g(L)§; = » 0 L*5;
k=0

Learn the 6 !
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Graph CNN

* Graph is given

GCNN : learn kernels defined in the spectral domai | CEREATS
IRy S e A

* Spectral domain « Fourier » position independent

* | earn a localized filter

K—-1 Defined on the K-hop neigbors :
(L) = 0,1  localized source pxl The source pxl & then roplaced 0%
90 - k Thetas independent of the position gn "= wesnedsmetisaiandneatypies
k=0 the graph

Source pixel

Convolution kernel
(emboss)

MNew pixel value (destination pixel)
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Graph CNN

Criginal model

* Pooling : graph coarsening

* Any coarsening method may be used provided it is
fast and parallel

Center element of the kemel is placed aver the (0x0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution kernel
(emboss)

Mew pixel value (destination pixel)
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Graph CNN limitations

* Graphs do not have directions

K—-1
Kernels are isotropic go(L) = Z 9, L
) %dgeS, elongated patterns can not be learned k=0
y
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