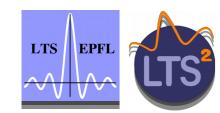
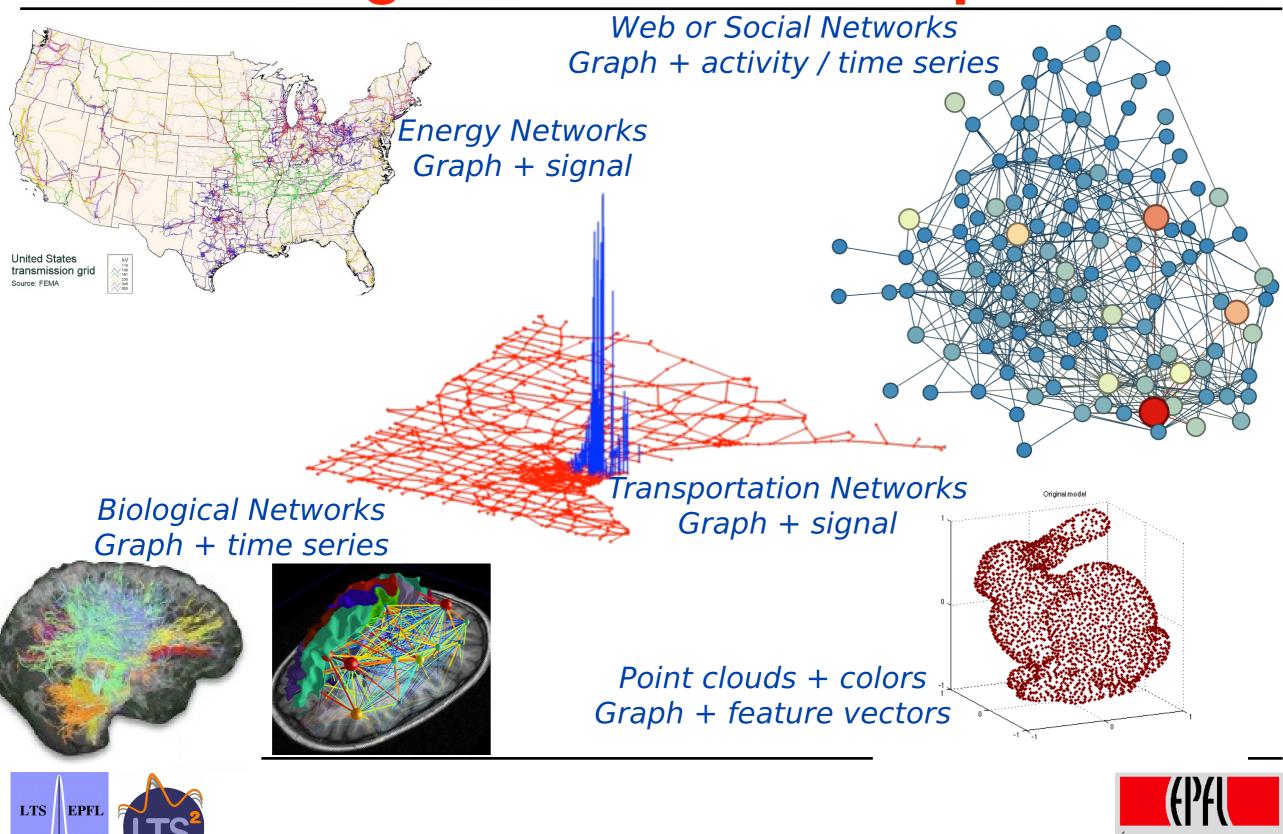
Learning and signal processing on graphs

Benjamin Ricaud, LTS2, EPFL



Processing Data on/with Graphs



ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

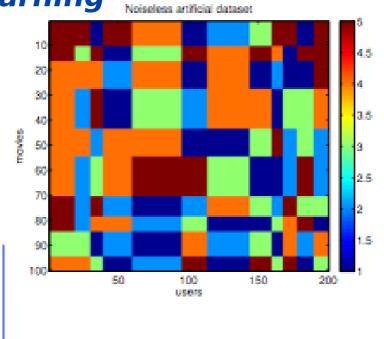
Some Typical Learning Problems

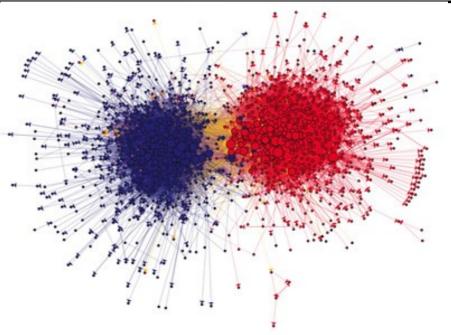
Unsupervised Learning

- Clustering
- Community detection

Semi-Supervised Learning

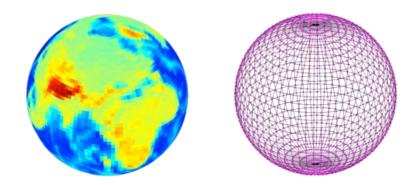
Label propagationMatrix completion

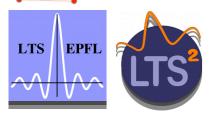




Supervised Learning

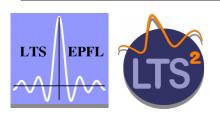
- Graph convolutional NN, « geometric Deep Learning »





Different cases

- Graph given (social network, brain network...) + data on the nodes, graph information different from features information.
- Graph computed from the data/features. Carries the same information as the features, is it useful? yes if
 - graph helps separate the classes -> faster learning, more accurate
 - eases interpretation for humans (recommendation system)
 - carries different information : global vs local (graph constructed from global properties/ learning focused on local patterns).

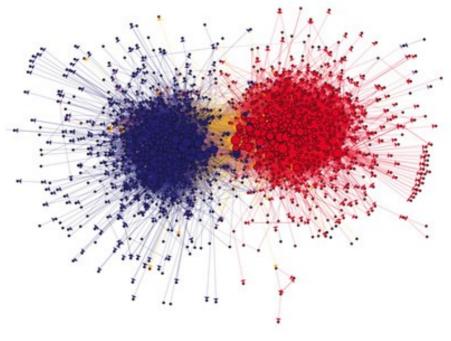


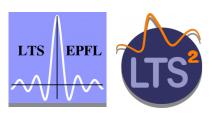
Unsupervised classification

Construct a graph from the features, then :

- Spectral cut, spectral clustering
 - First eigenvectors of the combinatorial or normalized graph Laplacian.
 - Fiedler vector : 2 clusters
 - k eigenvectors + k-means : k clusters
- Community detection
 - Fast and scalable, notion of modularity

[Fortunato, Community detection in graphs, 2010]

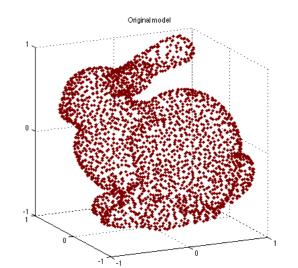




Remark on the graph design

Which distance ? How to connect ? Popular approaches :

<u>k-NN graph</u>: regular, no hub - Fast approximate kNN : FLANN



1) N(N-1)/2 weights to compute $\rightarrow k$ or threshold to choose, we need a sparse Laplacian

<u>Gaussian distance</u> $w_{ij} = \exp(-\frac{\|x_i - x_j\|^2}{4\sigma})$

- One motivation : graph Laplacian converges (strongly) in

probability to the Laplace-Beltrami operator [Belkin, Nyogi, 2005]

- Uniform distribution of points on the manifold, $n \to \infty, \quad \sigma(n) \to 0$

2) Graph : approximation of a (low-dimensional) manifold



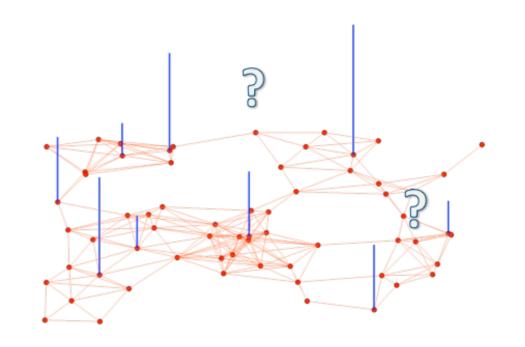
Semi-supervised learning with / on graphs

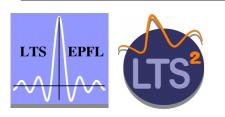
Label propagation Idea : smoothness, smooth signal on a graph

$$||Y - AX||_2^2$$
 or $||A \circ (Y - X)||_2^2$

Measure of smoothness :

$$X^{T}LX = \|\nabla X\|_{2}^{2} = \sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2}$$

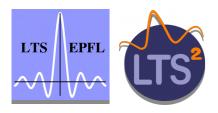




Learning with/on graphs

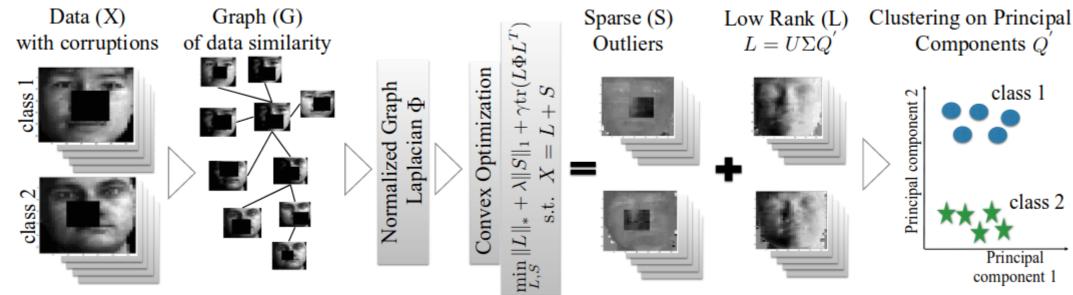
Matrix completion $\operatorname{Argmin}_X \|A \circ (Y - X)\|^2 + \alpha_1 X^T L_1 X + \alpha_2 X L_2 X^T$ Users in communities rate similarly 🕨 Graph of Mask Graph of movies users 10 4.5 20 $X^{T}L_{1}X = \sum w_{i,j}^{1} \|x_{\cdot,i} - x_{\cdot,j}\|^{2}$ 30 3.5movies 50 60 2.570 2 80 1.5 Similar movies in 100 clusters of genres 50 100 150 200U\$618

[Kalofolias et al., Matrix Completion on Graphs, 2014]



Learning with/on graphs

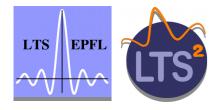
Unsupervised learning : Robust PCA on graphs



Application : outliers / sparse noise

[Shahid et al., Robust Principal component analysis en graphs, 2015]

	Model	Objective	Constraints	Parameters	Graph?	Factors?	Convex?
1	PCA	$\min_{U,Q} \ X - UQ\ _F^2$	$U^T U = I$	d	no	yes	no
2	RPCA [6]	$\min_{L,S} \ L\ _* + \lambda \ S\ _1$	X = L + S	λ	no	no	yes
3	PROPOSED	$\min_{\mathbf{L},\mathbf{S}} \ \mathbf{L}\ _* + \lambda \ \mathbf{S}\ _1 + \gamma \operatorname{tr}(\mathbf{L} \boldsymbol{\Phi} \mathbf{L}^{\mathbf{T}})$	$\mathbf{X} = \mathbf{L} + \mathbf{S}$	λ,γ	YES	NO	YES
4	GLPCA [10]	$\min_{U,Q} \ X - UQ\ _F^2 + \gamma \operatorname{tr}(Q \Phi Q^T)$	$QQ^T = I$				
5	RGLPCA [10]	$\min_{U,Q} \ X - UQ\ _{2,1} + \gamma \operatorname{tr}(Q \Phi Q^T)$		d,γ			
6	MMF [24]	$\min_{U,Q} \ X - UQ\ _F^2 + \gamma \operatorname{tr}(Q \Phi Q^T)$	$U^T U = I$		yes	yes	no
7	MMMF [20]	$\min_{U,Q,\boldsymbol{\alpha}} \ X - UQ\ _F^2 + \gamma \operatorname{tr}(Q(\sum_g \alpha_g \Phi^g)Q^T) + \beta \ \boldsymbol{\alpha}\ ^2$	$U^T U = I$	d,γ,eta			
8	MHMF [11]	$\min_{U,Q,\boldsymbol{\alpha}} \ X - UQ\ _F^2 + \gamma \operatorname{tr}(Q(\sum_g \alpha_g \Phi_h^g)Q^T) + \beta \ \boldsymbol{\alpha}\ ^2$	$1^T \boldsymbol{lpha} = 1$				



Learning the graph

• Learn the Laplacian matrix from the signals Space of valid Laplacians : $w_{i,j} \ge 0$, $L^T = L$, $\sum L_{i,j} = 0$

Minimization problem, smooth signals on the graph :

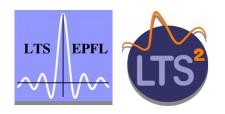
 $\operatorname{Argmin}_{L \in \mathcal{L}} \quad Tr(X^T L X) + \|L\|_F, \quad s.t. \quad Tr(L) = s$

$$Tr(X^{T}LX) = \sum_{i,j} w_{i,j} ||x_{i} - x_{j}||^{2}$$

[Dong et al., Laplacian Matrix Learning for Smooth Graph Signal Representation ICASSP 2015] More scalable, with a log barrier on the degrees :

Argmin_{$$L \in \mathcal{L}$$} $Tr(X^T L X) - \alpha \mathbf{1}^T \log(W \mathbf{1}) + \frac{\beta}{2} \|W\|_F$

→ No isolated node. [Kalofolias, How to learn a graph from smooth signals, AISTATS 2016]



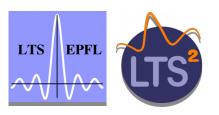
Limits

Building the graph from the data is computationally intensive

 $\frac{N(N-1)}{2} \quad \begin{array}{c} \text{Computation of} \\ \text{distances (weights)} \end{array}$

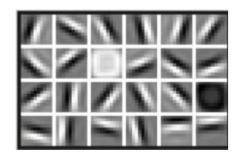
Alternative : Approximate nearest neighbors FLANN, $N \log N$

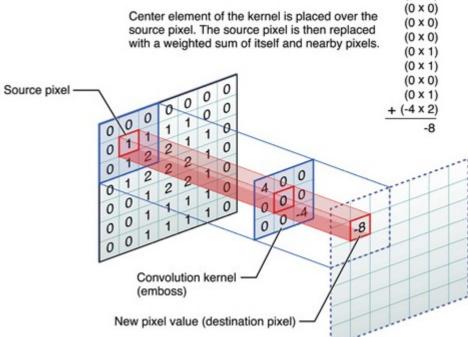
- Shape of the graph is important,
 - avoid hubs
 - avoid disconnected nodes
 - favor clusters ?
- What is a good graph ? No answer yet...



Graph CNN

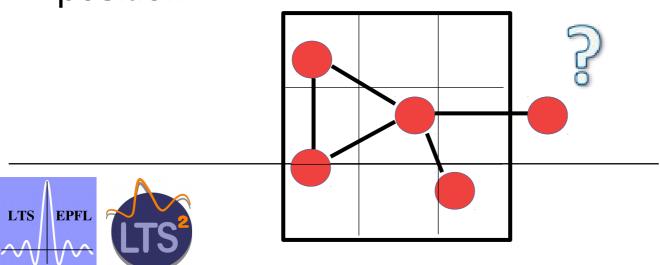
• Standard CNN : learn kernels (elementary *localized* patterns), 3x3 or 5x5 squares

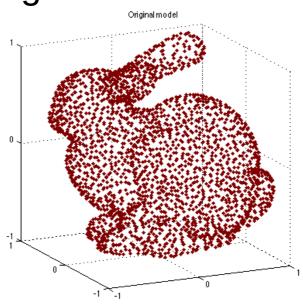




(4 x 0)

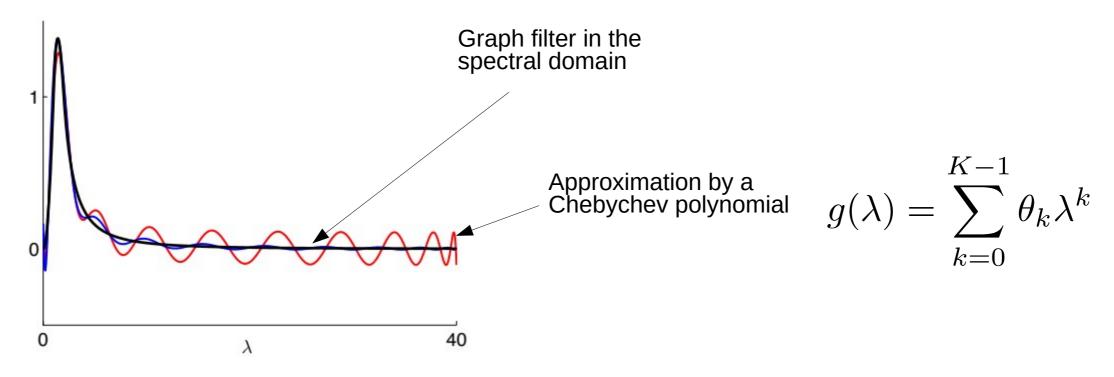
- Kernel on a graph ?
- 1) Irregular and 2) the neighborhood change with position





Reminder – graph filter

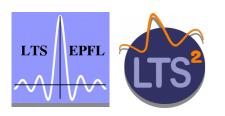
• Graph filter defined on the spectral domain :



• The kernel to learn:

$$\mathcal{K}(i) = GFT^{-1}g(\lambda)GFT\delta_i = g(L)\delta_i = \sum_{k=0}^{K-1} \theta_k L^k \delta_i$$
 over the A-1

Learn the θ_k !

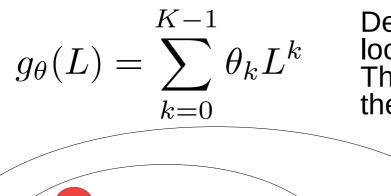


Graph CNN

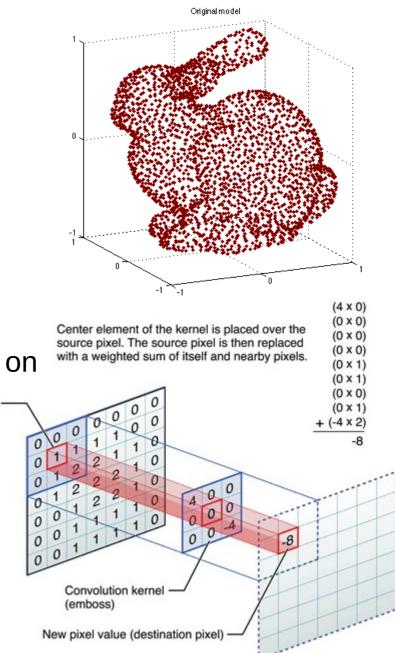
• Graph is given

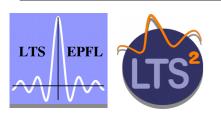
GCNN : learn kernels defined in the spectral domai

- Spectral domain « Fourier » position independent
- Learn a localized filter



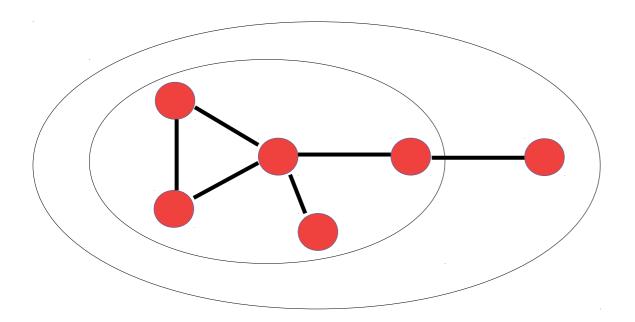
Defined on the K-hop neigbors : localized Thetas independent of the position on the graph

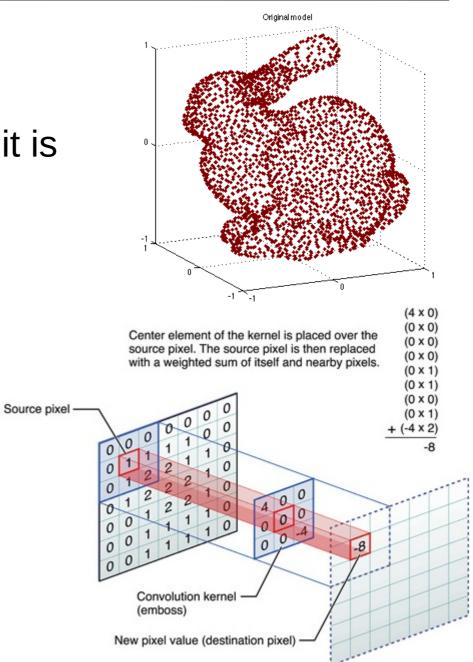


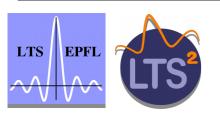


Graph CNN

- Pooling : graph coarsening
- Any coarsening method may be used provided it is fast and parallel





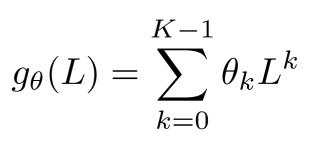


Graph CNN limitations

Graphs do not have directions

Kernels are isotropic

Edges, elongated patterns can not be learned



y

Х

0

3

0

0

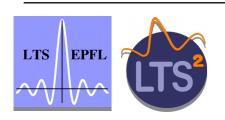
5

0

0

3

0



Х