
Introduction to signal 
processing on graphs

References: 

First few chapters of 

“Spectral graph theory”, Fan Chung



Processing Data on/with Graphs

Irregular Data 
Domains

Social Networks

Energy Networks

Transportation Networks
Biological Networks

Encode neighbors relationship, locality, affinity



Some Typical Processing Problems

Semi-Supervised Learning

Analysis / Information Extraction

Compression / Visualization / multi-scale

Earth data source: Frederik Simons

Classifcation

Filtering



Graph Signal Processing framework 
Outline

 Graph and signals
- Definition, types of graphs, regulars / irregulars, functions on 

the nodes

 The Laplacian operator
- smoothness, spectral properties, Fiedler vector, Fourier 

transform, 

 Good and bad graphs, limits of Graph SP
- Irregularities, small worlds, large graphs

Standard signal processing Graph signal processing 
?



Definitions

Graph and signal



Mathematical definition

Degree, sum of connections :



Mathematical definition

Adjacency matrix



Extensions to weighted graphs

Weight Matrix:

A symmetric N-by-N matrix W

W(i,j) is the weight (“strength”) of the edge between i,j (if any)

Degrees:



Extensions to directed graphs

Weight Matrix:

A non-symmetric N-by-N matrix W

Degrees:



Basic examples

Line graph:

Lattice:

(time series)

(images)

Values on the nodes

Time series, images : particular cases of Graph SP



Different kinds of graphs
Manifolds:

Irregular graphs:

Smooth and regular, homogeneous degree distribution

Small world, hubs, weak connections Locality, patch size depend on the node !

Easy representation



Definitions

Graph Laplacian



Functions defined on a graph
Basic function properties:

Becomes

The Laplacian

Variations, derivative, gradient.

Values on the edges !

What about the second derivative ?...

Node to node space →  square matrix



Graph Laplacian

With these definitions we have:

L is called unnormalized or combinatorial Laplacian of G
L is a symmetric, positive semi-definite matrix

- 1) There exist a normalized version of L

- 2) There exist a version for directed-graph L = D-W , but not symmetric.



Graph Laplacian

Proposition: L is positive semi-definite

For any N-by-N weight matrix W, if L = D-W where D is the
degree matrix of W, then

Rem: to ease notations we will sometimes use



Since L is real, symmetric and PSD:

 It has an eigendecomposition into real eigenvalues 
and eigenvectors

 The eigenvalues are non-negative

What can be learned from eigenvectors and eigenvalues ?



Some examples

Path graph DCT II transform



Some examples

Ring graph

Discrete Fourier
transform



Graph Fourier transform

Generalization of the Fourier transform to graphs :
Eigenvectors of the Graph Laplacian = Graph Fourier modes

As smooth as possible + orthogonality



The number of connected components c of G is the dimension
of the nullspace of L. Furthermore the null space of L has a 
basis of indicator vectors of the connected components of G

Proposition: eigendecomposition of L and structure of G

Indicator of a subset H of V is

Each connected component is an independent space



The Fiedler vector

Bottleneck

Rem. : Eigenvectors contain global information about the graph



Laplacian eigenvectors
1 20 43

w

Variable weight w.
Influence on the spectral properties ?

1 1 1

W=0 : 2 disconnected components
W=5 : strong connection between node 0 and 1
Localized variation impacts all the spectrum

Becomes localized

Fiedler vector



Laplacian eigenvectors

4 5

2

76
Comet graph

Eigenvectors localized in the different structures

Small values on the head0

3

1

Zeros on the tail

Fiedler vector

Inhomogeneous graph,
With a high degree node



A Few Laplacian Eigenvectors



Localization versus spreading

Well spread on the graph
GFT : delta on the Laplacian 
spectrum

Standard Fourier :

Sparse on the graph → well spread in Graph Fourier
NOT ALWAYS : depends on the graph

Localized eigenvectors may exist
- near weakly connected nodes, hubs



Normalized Graph Laplacian

Note: we will sometimes need to consider the generalised problem

In this case it makes sense to introduce the normalised Laplacian

Eigenvectors are closely related



Normalized Graph Laplacian

Eigenvalues of the normalised Laplacian

IFF bipartite graph!Algebraic connectivity



Summary

 Signal variations : no gradient but laplacian
 Laplacian spectrum : a way to generalize the Fourier 

Transform
 Multiplicity of λ=0 : number of connected 

components
 Fiedler vector separates the graph in 2
 Laplacian eigenvectors : contain global information
 Eigenvectors not always spread over the graph
 Concentration where inhomogeneous



Locality and diffusion

Neighborhood, locality and 
diffusion



Example: Diffusion on Graphs
Consider the following « heat » diffusion model

by functional calculus

Explicitly: 

Discrete version : 
Iterative process 

: one-hop neighbors : n-hop neighbors 



Example: Diffusion on Graphs
Examples of heat kernel on graph

What about a well connected graph ?

→ Extremely fast diffusion



Good graph, bad graph

Well connected graph : 
good for diffusion, transmission of information

But good for signal processing ?
If all nodes are connected together :
-how to denoise ?
-how to infer labels ?
-what is the size of a patch, neighborhood ?



Advanced signal processing

Detecting patterns at 
different scales



Spectral Graph Wavelet Localization 

Characterizations of this localization
Hammond et al., Wavelets on graphs via spectral graph 
theory, 2011

Shuman et al., Vertex-frequency analysis on graphs, 2013

Scale



Large graphs

Large graphs :
Diagonalization of the Laplacian prohibitive
Sparse but N³

Some solutions
Iterative application of the Laplacian faster (sparse matrix)

Graph coarsening    Lukas A., Graph reduction by local variation, 2018 

Approximate methods, random sampling 
Puy G. et al. Random sampling of bandlimited signals on graphs 2016
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