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Overview

● Population Genetic Context

● Artificial Genomes project – based on generative networks

● Demographic inference project



Population Genetics

mutation

X

X

recombination



Population Genetics - Data

Recombination + mutation create diversity

© A Branca
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Projects

(1) Unsupervised learning for learning the high dimensional distribution of existing genomic datasets 

● Generative Adversarial Networks and Restricted Boltzmann Machines

● Creating artificial genomes that bear the characteristics of real ones

(2) Supervised learning for demographic inference from present-day genomic data

● Approximate Bayesian Computation and Deep Neural Networks

● Designing architectures tailored for population genomic data



Why Artificial Genomes (AGs)? 

● Huge amount of genomic data but many datasets are private → loss of information

(held by companies, government, institutions)

● In particular some populations are underrepresented in public data → decreased 

resolution in studies  (Sirugo et al 2019)

➔ Could we create Artificial Genomes to augment public datasets?

➔ Do AGs retain important characteristics?

➔ Can we show that AGs are useful for population genetics tasks (detecting selection, 

gwas, imputation, ancestry inference,...)?



HOW? With generative models (unsupervised learning)

Data with no label 

Goal Generate samples having the same distribution as the data  

Training data ~ p
data

(x)
(distribution unknown)

Generated samples ~ p
model

(x)



How?

With generative models

Generative Adversarial Network 

(GAN)

Restricted Boltzmann Machine 

(RBM)

Previous works

● None in population genetics

● Some in genetics often for proteins (Killoran et al 2017, Davidsen et al 2019, Liu et al

2019, Tubiana et al 2019, Shimagaki and Weigt 2019),



Generative Adversarial Networks (GANs)
Goodfellow et al 2014

Karras et al 2018 proGAN



Generative Adversarial Networks (GANs) Goodfellow et al 2014

● Generate samples from pmodel(x) without explicitly defining it

i.e. sample from a complex high-dimensional unknown distribution

● Solution: sample from a simple distribution (random noise) and learn the transformation to 

the real data distribution pdata(x)

● Use a Neural network to learn this transformation



Generative Adversarial Networks (GANs) Goodfellow et al 2014

Image credit: Thalles Silva
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Generative Adversarial Networks (GANs) Goodfellow et al 2014

Image credit: Thalles Silva

Generate samples from p
model

(x) without explicitly defining it



GAN

Image adapted from: Thalles Silva

Game between 2 players (2 neural networks)

● Generator creates images as realistic 

possible to fool the Discriminator

● Discriminator is trained to beat the generator
(in a supervised fashion from Real and Fake images)
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GAN

Game between 2 players (2 neural networks)

● Discriminator wants to maximize its classification accuracy i.e. D(x) should be 1 

and D(G(z)) should be 0

● Generator wants to maximize the likelihood of discriminator to be wrong i.e. D(G(z)) 

should be 1

maxθg
E z∼p (z )[ log (D(Gθg

(z )))]
Discriminator output
 for generated data

maxθd
Ex∼p

data
[ log Dθ d

(x )]+E z∼p( z) [ log(1−Dθd
(G(z )))]

Discriminator output
 for real data

Discriminator output
 for generated data
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Our data, each row is an example for the GAN



GAN our implementation

Fully connected networks; with LeakyReLU activation (except for output layer)
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1000Genomes human dataset  2504 individuals worldwide (1000 Genomes Project Consortium et al. 2015)

First example



1000Genomes human dataset  2504 individuals worldwide (1000 Genomes Project Consortium et al. 2015)



Spoiler (hidden population structure, ie relationships between indiv/lines)

PCA 2D density plots 

(Colonna et al 2014) 



 Restricted Boltzmann Machines (RBMs)

Two-layer network

Smolensky 1986; Teh and Hinton 2001; Hinton and Salakhutdinov 2006; Hinton 2007; Larochelle and Bengio 2008

Hidden layer h

Visible layer v

b
j
hidden

b
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Weights W
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Activation function 
(relu, sigmoid,...)

Learn p
model

(x) that approximates p
data

(x) and generate samples from it
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 Restricted Boltzmann Machines (RBMs)

Two-layer network

Hidden layer h

Visible layer v

b
j
hidden

b
i
visible

Weights W

Probabilistic model of the joint distribution of v and h
based on an energy function

/ Z

Z partition function intractable

Z intractable but we can sample from the conditional distribution P(h|x) and P(x|h)

A Contrastive Divergence algorithm gives an approximation of P(v,h) 



 RBM

Intuition: 
- minimize the Energy of real examples (eg v(t), or similar example) 
- maximize the Energy of the rest (or instead of a negative example v(t)*, i.e. point generated from 
random h) 
until convergence

Energy E

Contrastive Divergence algorithm gives an approximation of P(v,h) 



 Restricted Boltzmann Machines (RBMs)

Intuition: minimize the Energy of real examples (or similar examples), and maximize the energy of the 
rest (points generated from random h) until convergence



 Our implementation of RBM

100 or 500 hidden nodes

Sigmoid or ReLU activation functions

k=10 or 100 in Persistent CD-k

Learning rate between 0.001 and 0.0001



AG project overview

● 2 Generative Models

    - Generative Adversarial Networks

    - Restricted Boltzmann Machines

● Create synthetic data from 1000Genomes (worldwide human populations data) and check 

preservation of data characteristics

● Applications to the private Estonian biobank

● Statistics for overfitting and privacy loss detection



Are population genetic characteristics preserved?

Quality control (hidden population structure, ie relationships between indiv/lines)

PCA 2D density plots 



Quality control (hidden population structure, ie relationships between indiv/lines)



Quality control II. (allele frequency at each SNP, ie feature frequency)

10K successive SNP dataset
Zoom on low frequency features



Quality control III. (structure along the genome, ie correlation between 

columns)



Quality control IV. 

”Chromopainting” genomes 

using 1000 Genomes 

reference panel

real Estonian genomes

GAN artificial genomes

RBM artificial genomes



Application I.

RBM Learned 

representation 

 
Observing the hidden space h

computed for real samples

→ a non linear alternative to 

PCA for dimension reduction



Application I. RBM learned representation 
Observing the hidden space h computed for real samples

→ a non linear alternative to PCA for dimension reduction

→ check how hidden nodes are activated by real samples



AG project overview

● 2 Generative Models

    - Generative Adversarial Networks

    - Restricted Boltzmann Machines

● Create synthetic data from 1000Genomes (worldwide human populations data) and check 

preservation of data characteristics

● Applications to the private Estonian biobank

● Statistics for overfitting and privacy loss detection



Application to the Estonian biobank

Private dataset, thousands of individuals, good quality (Leitsalu et al 2015)



Application II. 

Imputation of missing data

‘Perfect’ reference panel:    
   1000G + Estonian private dataset

‘Regular’ reference panel:
   1000G

Suggested panel:
   1000G + Artificial Genomes

→  improves performances for low 
frequency bin compare to the 
regular imputation scheme



Application III. Detecting selection

Population Branch Length (PBS): statistic for detecting selection based on 3-population trees 

(here Estonian, Yoruba, Japanese)  [analysis also done with XP-EHH]

Good correlation between real and GAN PBS: 0.923; real and RBM PBS: 0.755

High peaks in real data also captured in AGs

 ---- = 99th percentile      * =  highest peaks 

3348 SNP region homogenously
dispersed over chromosome 15

SLC24A5 

Yi et al. 2010, Sabeti et al. 2007
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Detecting overfitting

Nearest Neighbour Adversarial Accuracy (AA
TS

)  

Yale et al 2019

n = sample size
d

TS
(i) = distance between the real genome indexed by i 

   and its nearest neighbor in AG dataset
d

ST
(i) = distance between the artificial genome indexed by i

   and its nearest neighbor in the real dataset
etc



Yale et al 2019

Detecting overfitting

Nearest Neighbour Adversarial Accuracy (AA
TS

)  



 Example AA
TS

 scores 

Estonian test sets -> AATS score is 

well calibrated (AA
TS

 ~ 0.5)

GAN is underfitting 

RBM is overfitting



 Privacy Loss for Estonian Dataset

Privacy Loss = 
AA

Test Syn
 – AA

Train Syn

RBM is leaking information
GAN similar to releasing data 
never seen by the generative 
model



A new RBM sampling scheme to reduce Privacy Loss

Train RBM from real dataset (training set)
Generate new samples by starting the MCMC from another real dataset (sampling set)



Extension of AATS scores I.

Split the score into 2 parts
→ Observation of “correct” (left) versus “ill” (right) behaviour 



AATS over epochs ● Could be use as stopping criterion

● Sampling of AG to compute AA
TS

 is costly in RBMs
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Extension of AATS II. up to 4-nearest neighbors

Count various configurations such as TSS closest 

neigbhor is a Synthetic, 2nd closest also a Synthetic, etc

Expected relative frequencies for these configurations 

are known → compare to what is observed



Extension of AATS II. up to 4-nearest neighbors

GAN for the 805 SNPs dataset has SS and SSS in high frequency 

  but TS and TSS also in high frequency 

→ generating groups of Synthetic points clustered in the middle of True samples ? 

→ Extended AATS allows to identify complex cases of overfitting

S
S
S T

T

T



Summary AG project
● Unsupervised training of GANs and RBMs on (public and) private datasets to create 

Artificial Genomes with the idea of augmenting public datasets

● Proof-of-concept for different type of genomic data 

(dense short region of the genome, widespread with no physical linkage but strong population 

structure, SNPs uniformly sampled on a chromosome, genotype+phenotype, …)

● Difficulty and importance of quality control in a new area, extension of Adversarial 

Accuracy score
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Summary AG project
● Unsupervised training of GANs and RBMs on (public and) private datasets to create 

Artificial Genomes with the idea of augmenting public datasets

● Proof-of-concept for different type of data 

(dense short region of the genome, widespread with no physical linkage but strong population 

structure, SNPs uniformly sampled on a chromosome, genotype+phenotype, …)

● Difficulty and importance of quality control in a new area, extension of AA score

● Promising applications: imputation, selection scan, GWAS (genotype/phenotype 

association), still many others could be tested

Next steps
● Extend to full genomes, a computational/architectural challenge
● What is the notion of privacy in population genetics and can we really ensure it ?
● Leverage generative/autoencoding abilities for inference tasks
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