Neural networks for population genetics: demographic inference and data generation

Flora Jay Théophile Sanchez, Jean Cury, Guillaume Charpiat Burak Yelmen, Aurelien Decelle, Linda Ongaro, Davide Marnetto, Francesco Montinaro, Corentin Tallec, Cyril Furtlehner, Luca Pagani

er for Data Science

Paris-Saclay

Institute of Genomics, Tartu, Estonia Laboratoire de Recherche en informatique

Overview

- Population Genetic Context
- Artificial Genomes project based on generative networks
- Demographic inference project

Population Genetics

Population Genetics - Data

Recombination + mutation create diversity

© A Branca

Population Genetics

Population Genetics MUTATION GENETIC GENETIC RECOMBINATION DRIFT VARIATION **INFERENCE SELECTION** DEMOGRAPHY CLAR CLAR 200 WX lod Ser. 0 *** Horse (5 yrs) Reindeer (4 yrs) 24601.0910 km² 5 0,7 2 111 10 2 2.00 19.00 19.00 10910 Ne¹⁷ 6.64 A BE TOTAL REPORT OF A STREET Ø Sea with these Fride Licase per serve Age (ka BP) Fan et al 2016 et al 2011 Bison 13 yrst O. LL La La

Projects

(1) Unsupervised learning for learning the high dimensional distribution of existing genomic datasets

- Generative Adversarial Networks and Restricted Boltzmann Machines
- Creating artificial genomes that bear the characteristics of real ones

(2) Supervised learning for **demographic inference** from present-day genomic data

- Approximate Bayesian Computation and Deep Neural Networks
- Designing architectures tailored for population genomic data

Why Artificial Genomes (AGs)?

- Huge amount of genomic data but many datasets are private → loss of information (held by companies, government, institutions)
- In particular some populations are underrepresented in public data \rightarrow decreased resolution in studies (Sirugo et al 2019)

- Could we create Artificial Genomes to augment public datasets?
- Do AGs retain important **characteristics**?
- Can we show that AGs are useful for **population genetics tasks** (detecting selection, gwas, imputation, ancestry inference,...)?

HOW? With generative models (unsupervised learning)

Data with <u>no label</u>

Goal Generate samples having the same distribution as the data

Training data ~ p_{data}(x) (distribution unknown)

Generated samples ~ $p_{model}(x)$

How?

With generative models

Generative Adversarial Network (GAN) Restricted Boltzmann Machine (RBM)

Previous works

- None in population genetics
- Some in genetics often for proteins (Killoran et al 2017, Davidsen et al 2019, Liu et al 2019, Tubiana et al 2019, Shimagaki and Weigt 2019),

Generative Adversarial Networks (GANs)

Goodfellow et al 2014

Karras et al 2018 proGAN

Generative Adversarial Networks (GANs) Goodfellow et al 2014

- Generate samples from p_{model}(x) without explicitly defining it i.e. sample from a complex high-dimensional unknown distribution
- Solution: sample from a simple distribution (random noise) and learn the transformation to the real data distribution $p_{data}(x)$
- Use a Neural network to learn this transformation

Generative Adversarial Networks (GANs) Goodfellow et al 2014

- Generate samples from p_{model}(x) without explicitly defining it i.e. sample from a complex high-dimensional unknown distribution
- Solution: sample from a simple distribution (random noise) and learn the transformation to the real data distribution $p_{data}(x)$
- Use a Neural network to learn this transformation

Generative Adversarial Networks (GANs) Goodfellow et al 2014

Generate samples from $p_{model}(x)$ without explicitly defining it

Game between 2 players (2 neural networks)

- Generator creates images as realistic possible to fool the Discriminator
- Discriminator is trained to **beat the generator** (in a **supervised** fashion from Real and Fake images)

Game between 2 players (2 neural networks)

 Discriminator wants to maximize its classification accuracy i.e. D(x) should be 1 and D(G(z)) should be 0

$$\max_{\theta_{d}} E_{x \sim p_{data}} \left[\log D_{\theta_{d}}(x) \right] + E_{z \sim p(z)} \left[\log \left(1 - D_{\theta_{d}}(G(z)) \right) \right]$$

Discriminator output for real data

 Generator wants to maximize the likelihood of discriminator to be wrong i.e. D(G(z)) should be 1

$$max_{\theta_g} E_{z \sim p(z)} [\log \left(D(G_{\theta_g}(z)) \right)]$$

Discriminator output for generated data

Our data, each row is an example for the GAN

- Rows are individuals/haplotypes
- Columns are SNP positions -> features

HG00096_4 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
100001100100001001110101100110011001100	010101111000001	01111011111111000	100100000000100000
	01000000011	1.0.0.0.1.1.1.1.0.1.0.1.0.1	
10101010001101101000111111010111010	000010000101011	001111000000000110	111111100111100011111
100100101101011000000001100000011	010010001101100	01111100101111011	0011100011101000100
0101000111000110110100000101010000	8101101010111100	01011001001010000	001111011111000100
01001000111101101100010001100110010	000000001001011	00110110011100110	0101010001100101100
100000111000000011011000001001110	101111001001001	010111111000000100	0001100111111011111
	100011011100111	10001100010100011	1001010110111000101
	1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	111010010000000000000000000000000000000	1 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	00000101110		
HG00097 A 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0	011001100000110	01000001011110111	0001110010110101100
10100111001101011000111000000001110	000001000101101	10010100010011100	0100110101000101000
0100001010010110010101011100110010	011000011000110	01111100101111111	1000111100101110111
000100010000001110010111010001001	800111001011100	01010001110110000	0000111110111100000
101010000000100000000000101100100000	001000000110011	11010110000000000	0111100001000001100
11010011000000000001110000011010000	001011001000101	00100000000001100	0011100111110011000
1000001011000000000111111110110100	100100001011111	00111100010010011	1100011110100011001
1001000000001100000000111000001100	0 0 0 1 0 0 0 1 0 1 1 0 0 1 0	000111000000001001	1100001100000101110
	110000111101101	00110001100001000	1001000000101100001
	01000001010		
101011111000101010000000000000000000000	8 8 8 8 1 1 1 1 8 1 8 8 1 1 8	10100110011000100	8188118818888181181
	011010111001100	00111000101111111	0111101101101010111111
00000110100001010110001101000000	000111011101100	00110010010100000	0010110101111000100
01101100110000000000000101010100010	010000011101111	11111110001000000	0100000001110100001
110000000100000011011000011001100	000101001001001	11100000000000000000	0000101101110010111
10100011100001000011011010000110010	010000100111110	00011101000100011	1101000110100011010
110100000111011110100010111110101111	000000000100010	01001100010001010	01001010000010111111
0011110111001010001000011001110010	100001110001101	01010001110001011	10011000000100000000
1001101101001110000000100101101001	01000011000		

GAN our implementation

Fully connected networks; with LeakyReLU activation (except for output layer)

First example

1000Genomes human dataset 2504 individuals worldwide (1000 Genomes Project Consortium et al. 2015)

1000Genomes human dataset 2504 individuals worldwide (1000 Genomes Project Consortium et al. 2015)

Spoiler (hidden population structure, ie relationships between indiv/lines) PCA 2D density plots

1000 Genomes Panel (2504 individuals)

(a) 805 highly differentiated SNPs accross the genome (Colonna et al 2014)

Restricted Boltzmann Machines (RBMs)

Learn $p_{model}(x)$ that approximates $p_{data}(x)$ and generate samples from it

Two-layer network

Smolensky 1986; Teh and Hinton 2001; Hinton and Salakhutdinov 2006; Hinton 2007; Larochelle and Bengio 2008

Restricted Boltzmann Machines (RBMs)

Two-layer network

Probabilistic model of the joint distribution of **v** and **h** based on an **energy** function

Z partition function

 $P(v,h) = e^{-E(v,h)} / \operatorname{Z}$

 $E(v,h) = \sum_{ij} W_{ij}v_ih_j + \text{bias terms}$

Smolensky 1986; Teh and Hinton 2001; Hinton and Salakhutdinov 2006; Hinton 2007; Larochelle and Bengio 2008

Restricted Boltzmann Machines (RBMs)

Hidden layer h

Weights W

Two-layer network

b.hidden

b, visible

Probabilistic model of the joint distribution of **v** and **h** based on an **energy** function

Z partition function intractable

 $P(v,h) = e^{-E(v,h)} / \operatorname{Z}$

 $E(v,h) = \sum_{ij} W_{ij}v_ih_j + \text{bias terms}$

Z intractable but we can sample from the conditional distribution P(h|x) and P(x|h)

A Contrastive Divergence algorithm gives an approximation of P(v,h)

Visible layer v

RBM Contrastive Divergence algorithm gives an approximation of P(v,h)

Intuition:

- minimize the Energy of real examples (eg v(t), or similar example)

- maximize the Energy of the rest (or instead of a negative example $v(t)^*$, i.e. point generated from random h)

until convergence

Intuition: **minimize the Energy of real examples** (or similar examples), and **maximize the energy of the rest** (points generated from random h) **until convergence**

Our implementation of RBM

100 or 500 hidden nodes

Sigmoid or ReLU activation functions

k=10 or 100 in Persistent CD-k

Learning rate between 0.001 and 0.0001

AG project overview

- 2 Generative Models
 - Generative Adversarial Networks
 - Restricted Boltzmann Machines
- Create synthetic data from 1000Genomes (worldwide human populations data) and check preservation of data characteristics
- Applications to the private Estonian biobank
- Statistics for overfitting and privacy loss detection

Are population genetic characteristics preserved?

Quality control (hidden population structure, ie relationships between indiv/lines) PCA 2D density plots

1000 Genomes Panel (2504 individuals) (a) 805 highly differentiated SNPs accross the genome

Quality control (hidden population structure, ie relationships between indiv/lines)

Quality control II. (allele frequency at each SNP, ie feature frequency) 10K successive SNP dataset Zoom on low frequency features

Quality control III. (structure along the genome, ie correlation between columns)

Quality control IV.

"Chromopainting" genomes using 1000 Genomes reference panel

real Estonian genomes a. 10.4 141 ā su ACTIVITY (1404) ā --1000 1000 1000 1000 11 14:55 Predi Totalicate 80.00 2000 104 140 100 "collige GAN artificial genomes b. 20 34 2.1 and a product of the set 50 treat -改進部 35 24 55 ÷1. 10.00 19.00 111 10.00 1.18181 7.88 Topli or Position. c. **RBM** artificial genomes 200 12 ALMON Proj. ā --... §

Application I. RBM Learned representation

Observing the hidden space **h** computed for **real** samples

 $\rightarrow a$ non linear alternative to PCA for dimension reduction

Application I. RBM learned representation

Observing the hidden space \boldsymbol{h} computed for \boldsymbol{real} samples

- $\rightarrow\,$ a non linear alternative to PCA for dimension reduction
- $\rightarrow\,$ check how hidden nodes are activated by real samples

AG project overview

- 2 Generative Models
 - Generative Adversarial Networks
 - Restricted Boltzmann Machines
- Create synthetic data from 1000Genomes (worldwide human populations data) and check preservation of data characteristics
- Applications to the private Estonian biobank
- Statistics for overfitting and privacy loss detection

Application to the Estonian biobank

Private dataset, thousands of individuals, good quality (Leitsalu et al 2015)

Application II. Imputation of missing data

'Perfect' reference panel: 1000G + Estonian private dataset

'Regular' reference panel: 1000G

Suggested panel: 1000G + Artificial Genomes

 $\rightarrow\,$ improves performances for low frequency bin compare to the regular imputation scheme

Application III. Detecting selection

3348 SNP region homogenously dispersed over chromosome 15

Population Branch Length (PBS): statistic for detecting selection based on 3-population trees (here Estonian, Yoruba, Japanese) [analysis also done with XP-EHH] **Good correlation** between real and GAN PBS: 0.923; real and RBM PBS: 0.755 **High peaks in real data also captured in AGs**

AG project overview

- 2 Generative Models
 - Generative Adversarial Networks
 - Restricted Boltzmann Machines
- Create synthetic data from 1000Genomes (worldwide human populations data) and check preservation of data characteristics
- Applications to the private Estonian biobank
- Statistics for overfitting and privacy loss detection

Detecting overfitting

Nearest Neighbour Adversarial Accuracy ($AA_{\tau s}$)

Yale et al 2019

$$AA_{truth} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(d_{TS}(i) > d_{TT}(i))$$
$$AA_{syn} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(d_{ST}(i) > d_{SS}(i))$$
$$AA_{TS} = \frac{1}{2}(AA_{true} + AA_{syn})$$

n = sample size

 $d_{TS}(i)$ = distance between the real genome indexed by i and its nearest neighbor in AG dataset $d_{ST}(i)$ = distance between the artificial genome indexed by i and its nearest neighbor in the real dataset AATS: sum[is the closest neighbor of each Real or Fake individual of the same type (+1) or not (+0)?]

Expected AATS = 0.5

etc

Detecting overfitting

Nearest Neighbour Adversarial Accuracy (AA_{TS})

Yale et al 2019

Example AA_{TS} scores

Estonian test sets -> AATS score is well calibrated ($AA_{TS} \sim 0.5$)

GAN is underfitting RBM is overfitting Estonian Biobank panel [4] 2k individuals for training, 4k for test.

Privacy Loss for Estonian Dataset

A new RBM sampling scheme to reduce Privacy Loss

Train RBM from real dataset (training set)

Generate new samples by starting the MCMC from another real dataset (sampling set)

Extension of AATS scores I.

Split the score into 2 parts

→ Observation of "correct" (left) versus "ill" (right) behaviour

AATS over epochs

- Could be use as stopping criterion
- Sampling of AG to compute AA_{TS} is costly in RBMs

Extension of AATS II. up to 4-nearest neighbors

Model	AATS	TT	TS	ST	SS	TTT	TSS	STT	SSS	TTTT	TSSS	STIT	SSSS	TTTTT	TSSSS	STTTT	SSSSS
Ref. score	0.5	0.5	0.5	0.5	0.5	0.25	0.25	0.25	0.25	0.125	0.125	0.125	0.125	0.0625	0.0625	0.0625	0.0625
GAN	0.6177	0.2424	0.7576	0.007	0.993	0.1046	0.5974	0.0006	0.9806	0.0586	0.4736	0.0002	0.967	0.0372	0.3842	0	0.945
RBM	0.5503	0.6146	0.3854	0.514	0.486	0.3872	0.1542	0.269	0.2478	0.249	0.066	0.1434	0.1272	0.162	0.0292	0.0818	0.0638

Count various configurations such as TSS closest neighbor is a Synthetic, 2nd closest also a Synthetic, etc

Expected relative frequencies for these configurations are known \rightarrow compare to what is observed

Extension of AATS II. up to 4-nearest neighbors

							1											
	Model	AATS	TT	TS	SI	SS	TIT	TSS	SIT	SSS	TTTT	TSSS	STIT	5555	TTTTT	TSSSS	STITT	SSSSS
i S	Ref. score	0.5	0.5	0.5	0.5	0.5	0.25	0.25	0.25	0.25	0.125	0.125	0.125	0.125	0.0625	0.0625	0.0625	0.0625
1	GAN	0.6177	-0.2424	0.7576	0.007	0.993	0.1046	0.5974	0.0006	0.9806	0.0586	0.4736	0.0002	0.967	0.0372	(0.3842)	0	0.945
	RBM	0.3503	0.6146	0.3854	0.514	0.486	0.3872	0.1542	0.269	0.2478	0.249	0.066	0.1434	0.1272	0.162	0.0292	0.0918	0.0638

S S T S

GAN for the 805 SNPs dataset has SS and SSS in high frequency but TS and TSS also in high frequency

 \rightarrow generating groups of Synthetic points clustered in the middle of True samples ?

→ Extended AATS allows to identify complex cases of overfitting

Summary AG project

- Unsupervised training of GANs and RBMs on (public and) private datasets to create Artificial Genomes with the idea of augmenting public datasets
- Proof-of-concept for different type of genomic data (dense short region of the genome, widespread with no physical linkage but strong population structure, SNPs uniformly sampled on a chromosome, genotype+phenotype, ...)
- Difficulty and importance of **quality control** in a new area, extension of Adversarial Accuracy score

Summary AG project

- Unsupervised training of **GANs and RBMs** on (public and) **private** datasets to create **Artificial Genomes** with the idea of augmenting public datasets
- Proof-of-concept for different type of data

(dense short region of the genome, widespread with no physical linkage but strong population structure, SNPs uniformly sampled on a chromosome, genotype+phenotype, ...)

- Difficulty and importance of **quality control** in a new area, extension of AA score
- Promising applications: imputation, selection scan, GWAS (genotype/phenotype association), ... still many others could be tested

Summary AG project

- Unsupervised training of **GANs and RBMs** on (public and) **private** datasets to create **Artificial Genomes** with the idea of augmenting public datasets
- Proof-of-concept for **different type of data**

(dense short region of the genome, widespread with no physical linkage but strong population structure, SNPs uniformly sampled on a chromosome, genotype+phenotype, ...)

- Difficulty and importance of **quality control** in a new area, extension of AA score
- **Promising applications**: imputation, selection scan, GWAS (genotype/phenotype association), still many others could be tested

Next steps

- Extend to full genomes, a computational/architectural challenge
- What is the notion of privacy in population genetics and can we really ensure it ?
- Leverage generative/autoencoding abilities for inference tasks

Acknowledgments

- Inria TAU team for providing computational resources (GPU)
- All co-autors and in particular Burak Yelmen and Théophile Sanchez
- Adrien Pavao and other members of TAU (LRI)

- Fundings
 European Union through the European Regional Development Fund Estonian Research Council grant
 Laboratoire de Recherche en Informatique
 Center for Data Science
- Inspiration for preparing these slides: F Li, I Goodfellow, H Larochelle and A Ghodse's lectures